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Abstract

Recent analytical works on strong magnetized plasma turbulence have hypothesized the existence of a range of
scales where the tearing instability may govern the energy cascade. In this paper, we estimate the conditions under
which such tearing may give rise to full nonlinear magnetic reconnection in the turbulent eddies. When those
conditions are met, a new turbulence regime is accessed where reconnection-driven energy dissipation becomes
common, rather than the rare feature that it must be when they are not. We conclude that while such conditions are
very stringent for fluid-scale eddies, they are easily met for kinetic-scale eddies; in particular, we suggest that our
arguments may help explain recent Magnetospheric Multiscale (MMS) observations of (so-called) electron-only
reconnection and of energy dissipation via electron Landau damping in the Earthʼs magnetosheath.

Unified Astronomy Thesaurus concepts: Plasma astrophysics (1261); Space plasmas (1544); Plasma physics
(2089); Interplanetary turbulence (830); Magnetic fields (994)

1. Introduction

Magnetized plasmas are abundant in the universe. Examples
include the Earthʼs magnetosphere, the solar wind and the solar
corona, as well as many others, more distant and often more
exotic, such as accretion disks around massive central objects,
astrophysical jets, pulsar wind nebulae, etc. Many such
environments, including all those just listed, are turbulent—a
natural consequence of large-scale (roughly system-size)
energy injection, and relatively infrequent collisions between
the particles constituting those plasmas.

Beyond its interest as a fundamental physics problem, an
understanding of turbulence in those and other environments is
believed to be crucial to address longstanding, fundamental
processes such as dynamo action, enhanced loss of angular
momentum in accretion disks, electron-to-ion energy partition,
and particle energization.

The modern understanding of (strong) plasma turbulence in
the fluid approximation, though still incomplete, rests on a few
qualitative ideas for which there is compelling observational
and numerical evidence(e.g., Biskamp 2008; Chen 2016;
Davidson 2016; A. A. Schekochihin 2020, in preparation).
Among these are: (i) a Kolmogorov-like cascade of energy
from large to small scales; (ii) the concept of critical
balance(Goldreich & Sridhar 1995)—essentially a causality
argument relating turbulent dynamics parallel and perpend-
icular to the local mean magnetic field; and (iii) the notion of
dynamic alignment of the turbulent fluctuations(Bol-
dyrev 2006; Chandran et al. 2015; Mallet et al. 2015), which
determines constraints imposed on the turbulence by the active
alignment between velocity and magnetic field fluctuations.

One direct consequence of the combination of these three
concepts is the prediction that turbulent eddies should be
anisotropic in all directions with respect to the local mean
magnetic field; in particular, they should resemble current
sheets—localized regions of intense electric current—in the
field-perpendicular plane, whose aspect ratio increases with
perpendicular wavenumber. Current sheets are, indeed, almost
ubiquitously observed in direct numerical simulations of
forced, three-dimensional magnetohydrodynamic (MHD)

turbulence(e.g., Maron & Goldreich 2001; Biskamp 2008;
Zhdankin et al. 2013).
The extension of these ideas to the kinetic range of plasma

turbulence—relevant in weakly collisional plasmas of which
the solar wind is the prototypical example—is, predictably, not
straightforward. However, again, there is abundant numerical
evidence for the formation of current sheets in this range(e.g.,
TenBarge & Howes 2013; Wan et al. 2015; Grošelj et al.
2018). Why this should be so has not been established on
general theoretical grounds, but Boldyrev & Loureiro (2019)
have recently advanced a possible explanation applicable to
plasmas where βi∼1?βe, such as found, for example, in the
Earthʼs magnetosheath (i.e., for so-called inertial kinetic-
Alfvén wave turbulence; Chen & Boldyrev 2017; Passot
et al. 2017, 2018; Roytershteyn et al. 2019).
Current sheets being traditionally associated with magnetic

reconnection(Biskamp 2005; Priest & Forbes 2000; Zweibel &
Yamada 2009; Yamada et al. 2010), it is unsurprising that this
process has acquired significant prominence as a potential key
mechanism in magnetized turbulence(e.g., Matthaeus &
Lamkin 1986; Retinò et al. 2007; Sundkvist et al. 2007;
Servidio et al. 2009; Osman et al. 2014; Wan et al. 2015; Cerri
et al. 2017; Shay et al. 2018). Fundamentally, reconnection
leads to the conversion and dissipation of magnetic energy;
thus, one expects that if it is indeed active in turbulence it may
qualitatively impact the dynamics and observational signatures.
An important point that needs to be introduced in our

discussion at this stage is that of the relationship—and
distinction—between magnetic reconnection and the tearing
mode (Furth et al. 1963). The latter is an instability that
manifests itself through the reconnection of magnetic field lines
(and the consequent opening of magnetic islands (or flux
ropes)). Strictly speaking, therefore, the tearing mode can be
called magnetic reconnection; however, the term “reconnec-
tion” is most commonly used to refer to a strongly nonlinear
plasma phenomenon associated with significant magnetic
energy transfer and dissipation, as already mentioned. Accord-
ing to this classification, the deep nonlinear stage of evolution
of the (strongly unstable, i.e., large instability parameter Δ′)
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tearing mode(Coppi et al. 1976; Waelbroeck 1989; Jemella
et al. 2003; Loureiro et al. 2005) is appropriately referred to as
reconnection; but not its linear and early nonlinear stages. Let
us now see why this distinction matters.

Recent works(Boldyrev & Loureiro 2017, 2018, 2019;
Loureiro & Boldyrev 2017a, 2017b, 2018; Mallet et al.
2017a, 2017b) have presented analytical arguments for the
inevitability of the onset of the tearing mode (in either its
resistive or collisionless forms, as appropriate) below a certain
(so-called, critical) turbulence scale, l Lcr  , where L is the
energy injection scale, in a wide variety of plasma regimes. It is
argued by these authors that the effect of the tearing mode is to
redefine the energy cascade rate (to become the tearing mode
growth rate, see Section 2), resulting in a different energy
spectrum and eddy anisotropy at scales l lcr . Magneto-
hydrodynamic simulations performed subsequently appear to
lend support to these ideas(Dong et al. 2018; Walker et al.
2018), as does a detailed analysis of solar wind data(Vech
et al. 2018). Additional consistent numerical evidence has been
reported by Arzamasskiy et al. (2019), Landi et al. (2019;
specifically, the measurement of linear anisotropy of the
turbulent fluctuations, ~ ^k k , in the sub-ion range, as
predicted for tearing-mediated inertial kinetic-Alfvén wave
turbulence;Boldyrev & Loureiro 2019).

Tearing onset in turbulence thus appears to be in reasonably
strong footing—prompting the important question of whether it
can (and, if so, under what conditions) lead to a fully nonlinear
reconnecting stage. Essentially, the reason this question is non-
trivial is that the reconnection rate differs from the tearing
mode growth rate (and, therefore, from the eddy turnover rate
in the tearing-mediated turbulence range). The goal of this
paper is to address this issue.4

2. Preliminaries

The key idea underlying the suggestion that the tearing mode
is activated at turbulence scales l lcr derives from the
observation that, at such scales, the tearing mode growth rate,
g lt ( ), exceeds the eddy turn-over rate, t l-

nl
1( ), that would

otherwise pertain to those scales, i.e.,

g t 1, 1t nl ( )

with lcr resulting from solving this condition in the case of
approximate equality(Loureiro & Boldyrev 2017a; Mallet
et al. 2017a). It is demonstrated in these references that the
specific mode (wavenumber) that solvesEquation (1), among
all possible tearing-unstable modes, is the fastest-growing
tearing mode (often dubbed the “Coppi” mode; Coppi et al.
1976).
The onset of the tearing mode, per se, is not sufficient to

interfere with the turbulent cascade. Its ability to be
dynamically significant naturally hinges on whether it can
attain a nonlinear amplitude. In this regard, the tearing mode is
a somewhat peculiar instability in that it becomes nonlinear at

very small amplitudes: i.e., as soon as the width of the magnetic
island that it creates exceeds the thickness of the inner
boundary layer (which is, forcefully, asymptotically smaller
than the characteristic length scale of variation of the
background magnetic profile; i.e., in this case, than the size
of the eddy, λ).5 As the tearing mode begins its nonlinear
evolution, it continues to grow exponentially at the same rate as
in the linear stage6 (Wang & Bhattacharjee 1993; Porcelli et al.
2002; Loureiro et al. 2005). These notions imply that 

Equation (1) correctly represents the condition for the nonlinear
tearing mode to affect the turbulent cascade (Boldyrev &
Loureiro 2017; Loureiro & Boldyrev 2017a; Mallet et al.
2017a). Furthermore, the tearing mode onset implies that γt
becomes the eddy turnover rate at those scales, with a
consequent change in the turbulence spectrum and other
properties.
However, and as we now explain, it is less clear—but, we

will argue, critical—whether the (early) nonlinear stage of the
tearing mode evolution has the chance to evolve toward the
deep nonlinear (i.e., properly reconnecting) stage, whereupon a
significant amount of the magnetic flux in the eddy is
reconnected, and considerable magnetic energy dissipation
and conversion occurs.
In the absence of background turbulence, the (strongly

unstable, large D¢) tearing mode is known to transition to a
fully nonlinear reconnecting state once its amplitude becomes
sufficiently large(Waelbroeck 1989; Jemella et al. 2003;
Loureiro et al. 2005, 2013). At this moment, the tearing rate
will, in most cases, change to a different value, usually referred
to as the (normalized) reconnection rate, . The current
understanding of reconnection suggests the following. In
resistive MHD, there are two possibilities for , depending
on the value of the Lundquist number, h=S L vCS A , where
LCS is the current sheet length, vA the Alfvén speed based on
the reconnecting component of the magnetic field, and η is the
magnetic diffusivity. If »S S 10cr

4 we have = - S 1 2 (
i.e., the Sweet–Parker rate; Parker 1957; Sweet 1958). This is
the only case where, in fact, the reconnection rate is the same as
the tearing rate (of the most unstable tearing mode). However,
this result is of limited applicability as, generally, S S ;cr in
such cases, one instead has = »- S 0.01cr

1 2 (Loureiro et al.
2007, 2012; Bhattacharjee et al. 2009; Samtaney et al. 2009;
Huang & Bhattacharjee 2010; Uzdensky et al. 2010; Loureiro
& Uzdensky 2016). For collisionless reconnection, though
absent a theoretical explanation (see, however, Liu et al. 2017),
it is generally accepted that » 0.1 (Birn et al. 2001; Comisso
& Bhattacharjee 2016; Cassak et al. 2017).
In addition to the difference in rates, collisional (resistive)

and collisionless reconnection differ also in the ways in which
the upstream magnetic energy may be channeled. In the MHD

4 Hopefully, the reason for the somewhat tautological title of this paper is now
clear. Reconnection is usually implicitly understood to be a nonlinear
phenomenon. The specific phrasing of the title aims to stress the distinction
between the linear and early nonlinear evolution of the tearing mode, on one
hand, and its late, strongly nonlinear evolution on the other—the latter being
what is meant here by the proper, or nonlinear, reconnection stage. This
distinction is key, since the linear and early nonlinear stages of the tearing
mode reconnect insignificant amounts of flux, and lead to negligible energy
dissipation and conversion.

5 To be specific: purely from geometric considerations and the definition of
separatrix, one has that the full width of a magnetic island is given by

y y= - W 4 eq
˜ , where ỹ is the perturbed (reconnected) flux, and

y » B aeq eq is the equilibrium current at the rational layer. The tearing mode
becomes nonlinear when d»W in, where δin is the width of the inner boundary
layer that arises in the tearing mode calculation(Furth et al. 1963; Coppi et al.
1976); it scales with resistivity in the MHD regime, or with electron inertia in
kinetic calculations and is, by definition, asymptotically smaller than a, the
width of the background equilibrium. One thus finds that, in the early nonlinear
regime, y y d» a1 16 1;eq in

2˜ ( )  note however that, numerical pre-factor
aside, this condition implies that, for the Coppi mode, the perturbed and
background currents are comparable at this stage.
6 This is not generally true for all wavenumbers unstable to tearing, but it is
true for the most unstable (Coppi) mode.
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case, only ohmic and viscous dissipation are possible, in
addition to the kinetic energy in the reconnection outflows, and
the reconnected magnetic-field energy. In the kinetic case,
however, super-thermal particle acceleration, as well as
electron Landau damping, replace ohmic and viscous heating.
Pertinently to our discussion here, reconnection-driven energy
dissipation occurs predominantly in strongly localized current
sheets in the MHD case; but it takes place at scales comparable
to the background reconnecting field (the eddy, in the context
of turbulence) in the kinetic case: particle energization can
happen via the trapping of particles inside of plasmoids(e.g.,
Drake et al. 2006), whose widths are comparable to the scale of
the background reconnecting field; and electron Landau
damping induced by reconnection also seems to cover a wide
range of spacial scales(Loureiro et al. 2013; Numata &
Loureiro 2015). These notions inform how the qualitative
properties of turbulence might change if full reconnection is
permitted. For example, on the basis of this discussion, one
may expect a steepening of the spectrum in the kinetic case,
and enhanced intermittency in the MHD case (as discussed
below).

For use in what follows, let us define the reconnection time
as

t t= l
- , 2rec
1
A, ( )

where t l=l lvA, A, . The physical meaning of trec is that it is
the time that it takes to reconnect the magnetic flux contained
in an eddy of size λ and reconnecting field lxB ( ). The question
which we wish to address is whether this reconnection rate is
larger than the tearing rate, that is, whether an eddy distorted by
the tearing instability may end up reconnecting a significant
amount of the magnetic flux in the eddy where it occurs. We
propose that this will only happen if

g t 1. 3t rec ( )

In other words, a typical eddy at scales l lcr exists for a
time of order g-

t
1. The tearing mode occurring within such an

eddy, therefore, has a finite probability of reaching the deep
nonlinear stage, whereupon it may transition to the reconnec-
tion regime. If condition(3) is met, then the reconnection time
is much shorter than the eddy turnover time, and it is thus
expected that full reconnection will occur. Concurrent energy
dissipation or conversion may then lead to a steepening of the
spectrum beyond the predictions of the tearing-mediated
cascade, and/or an increase in the intermittency of the
turbulence. Otherwise, reconnection is slower, and the eddy
will cease to exist without significant reconnection having
taken place; in this case, the tearing-mediated cascade is
unaltered.

We now proceed to compute this condition, and discuss its
implications, in three different cases: the pure MHD case,
Section 3; and the cases when tearing, and reconnection, are
enabled by kinetic physics (electron inertia) instead of
resistivity, and the eddies in which they happen are above
(Section 4.1) or below (Section 4.2) the ion kinetic scales.

3. The Magnetohydrodynamic Case

The onset of tearing in MHD turbulence has been addressed
by Loureiro & Boldyrev (2017a), Mallet et al. (2017a),

Boldyrev & Loureiro (2017). These authors find

l ~ -L S , 4cr L
4 7 ( )

where h=S LVL A,0 is the outer scale Lundquist number, and
VA,0 is the Alfvén velocity based on the background (mean)
field B0. Below this scale, the eddy turnover time becomes the
growth rate of the fastest growing tearing mode:

g t l h~ l l
- -v 5t A,
1

A,
1 2( ) ( )

where(Boldyrev & Loureiro 2017)

e h l~l
-v , 6A,

2 5 1 5 3 5 ( )

with e = V LA,0
3 the injected power.

Therefore, evaluation of Equation (3) yields the requirement

l - -L S . 75 4
L
3 4 ( )

It is necessary for the validity of this result that
l l lcr diss  , where l ~ -S Ldiss L

3 4 (Boldyrev & Lour-
eiro 2017) is the dissipation scale. Since < 1, the second
inequality is automatically satisfied. As to the first, we find that
it implies

-S . 8L
7 ( )

As mentioned before, as long as x h= ~x l S v S 10A, cr
4, the

reconnection rate is ~ ~- S 0.01cr
1 2 . Let us check that this

is indeed true. UsingEquation (6) and the scaling
x l l l~ L Lcr

1 4
cr

9 5( ) ( ) (Boldyrev & Loureiro 2017), both
of which expressions are valid in the tearing-mediated
turbulence range, we find that

lx
-S S L S Scr cr

5 12
L
73 84  . This is smaller than l Lcr

if ~S S 10L cr
7 5 28 5 , a condition which is superseded by

Equation (8). We thus arrive at the conclusion that significant
reconnection is only possible if =-S 0.01 10L

7 14 , a
considerable demand even by the standards of astrophysical
and space plasmas—and certainly one that direct numerical
simulations cannot be imagined to meet anytime in the
foreseeable future.
Still, one can speculate as to what might happen once that

threshold is reached. In the usual Kolmogorov-type picture of
turbulence, the dissipation of turbulent energy is assumed to be
uniform in space and time, occurring in a space-filling manner
at the scale of the smallest turbulent eddies. The triggering of
full reconnection in inertial-scale eddies is expected to change
this picture. In resistive MHD at high Lundquist numbers,
reconnection leads to ohmic and viscous heating in sharply
localized structures—small-scale current sheets that mediate
the plasmoid chain. This fact, in combination with the idea that
there is only an order unity chance (rather than a near certainty)
that eddies will live long enough to reconnect, leads us to
expect that at the very high values of S that Equation (8) points
to, turbulence should become significantly more intermittent
than below that threshold.
To estimate the effect of intermittency, we assume a simple

intermittency model, the so-called β-model (e.g., Frisch 1995).
The model assumes that the energy cascade is not space filling
but rather occurs in the vicinity of structures with spatial
dimension D. The requirement of a constant energy flux over
scales then reads g =l lp v constt

2 , where l~l
-p D3 , and gt is

given by Equation (5). Indeed, eddies of size λ occupying the
regions around D-dimensional structures cover a fraction of the

3
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volume proportional to pλ. From this we derive l~l l
-v p3 5 2 5.

The energy density then reads l l~ ~l l l
-E v p D2 6 5 3 5( ) . For

two-dimensional structures, this gives l~lE 7 5, which implies
the Fourier energy spectrum ~ =^ ^

-
^
-E k k k12 5 2.4( ) , only

somewhat steeper than the ^
-k 11 5 spectrum predicted in the

tearing-range excluding intermittency corrections(Boldyrev &
Loureiro 2017; Mallet et al. 2017a).

For completeness, we note that the calculation leading to
condition (7) can be straightforwardly adapted to the case when
the profile of the reconnecting magnetic field in the eddy is
better represented by lxsin( ), instead of the Harris profile
( lxtanh( )) that we consider by default in this paper. In that
case, g t l h~ l l

- -vt A,
1

A,
3 7( ) , with e h l~l

-vA, 7 18 1 6 5 9(Bol-
dyrev & Loureiro 2017).Equation (7) is then replaced by
l - -L S3 2

L
3 4 . The estimation of the dissipation scale is

unchanged from that pertaining to the Harris sheet; but, in this
case, l ~ -L Scr L

6 11. Therefore, Equation (8) is instead
-SL 22 3 . The intermittency-corrected spectrum in this

case is ~ =^ ^
-

^
-E k k k42 15 2.8( ) .

4. The Collisionless Case

Let us now examine the same question in a plasma where
collisions are sufficiently rare that the breaking of frozen flux
condition required to enable the tearing mode and the
subsequent nonlinear reconnection stage is due to electron
inertia (active at the electron skin-depth scale, w=d ce pe),
rather than resistivity as considered in the previous section; i.e.,
in this case, » 0.1.

As documented in Loureiro & Boldyrev (2017b), there are
two cases that need considering: the first, somewhat simpler to
address, is when the critical scale at which the tearing mode
onsets is in the MHD range (i.e., lcr is larger than the ion
kinetic scales)—even though, to repeat, the tearing and
reconnection themselves require kinetic effects. This is treated
in Section 4.1. The second case is when the onset of tearing
only occurs for scales smaller than the ion kinetic scales. This
is discussed in Section 4.2.

4.1. Reconnection at Fluid Scales

Several cases are possible, depending on plasma parame-
ters(Loureiro & Boldyrev 2017b). There is no need here to be
exhaustive: for any particular case, the calculation proceeds in a
qualitatively similar way. Therefore, let us consider, as an
example, a low beta plasma (see Sections 2 and 3 of Loureiro
& Boldyrev 2017b)—we choose to analyze this particular case
because of its potential relevance to solar wind observations(-
Vech et al. 2018), and perhaps also to the solar corona. In this
case, in the tearing-mediated range, the eddy turnover rate
becomes the growth rate of the fastest growing tearing mode as
given by g r l~ lv dt e sA,

3, where rs is the ion sound Larmor
radius. Evaluation of Equation (3) then yields:

l r- d . 9e s
1 2 1 2( ) ( )

This expression only applies in the range of scales
l l rscr   where, for this case,
l r~L d L Le scr

4 9 4 9( ) ( ) (Loureiro & Boldyrev 2017b;
Mallet et al. 2017b); this translates into

r r
  . 10d L9

2
e

s s
( ) ( ) 

The left inequality is probably not satisfied in the (pristine)
solar wind at ∼1 au (it requires b »-m m2 0.1e e i

2( ) ,
which may be too low). In that case, one concludes that
reconnection in current sheets should not be a main energy
dissipation mechanism in that turbulent environment at these
scales. The opposite situation, however, should pertain to the
solar corona: using standard parameters there is no difficulty in
concluding that both inequalities in Equation (10) should hold
comfortably.7 From the point of view of numerical simulations,
this result, like Equation (8), unfortunately places close to
impossible demands.
For the lxsin( ) profile, Equation (9) becomes instead

l r- de s
2 3 4 9 5 9 ; whereas Equation (10) is replaced by

r r d Le s s
3 2 63 6 9 4( )  . The conclusions drawn

above pertain equally for these estimates.

4.2. Reconnection at Kinetic Scales

Finally, we analyze the case when the tearing onset only
occurs at scales below the ion kinetic scales. Let us consider
here the analysis recently proposed by Boldyrev & Loureiro
(2019) of sub-ion range turbulence in plasmas such that
b b~ 1i e . The relevant eddy turnover rate is

g
l l

~ lv d
. 11t

e eA ,
2

⎜ ⎟⎛
⎝

⎞
⎠ ( )

Therefore we find:

g t
l

 ~-
d

1 3. 12t
e

rec
1 2 ( ) 

Repeating this derivation for the xsin( ) magnetic field profile
instead yields

l ~-d 5. 13e
2 3 ( )

Unlike the two cases considered previously, an estimation of
lcr is not available for this situation (a reflection of the fact that
a detailed understanding of sub-ion range turbulence is still
lacking). The only known constraint that applies to lcr is that it
be smaller than r rdmin , ,i i s( ), which simply follows from the
range of validity of the equations that are used by Boldyrev &
Loureiro (2019) to computeEquation (11). At small scales, it is
required that l de , which is (marginally) satisfied by
Equation (12). Thus, unlike the regimes identified by
Equations (8) and(9), the condition represented by
Equation (12) may be unavoidable; that is, first-principles
numerical simulations that address this plasma regime with
adequate separation between the ion and the electron scales
may inevitably satisfy the conditions for nonlinear reconnec-
tion in turbulent eddies at sub-ion scales. Indeed, the biggest
such simulation that we are familiar with reports spectra steeper
than ^

-k 3 in the sub-ion range(Told et al. 2015), which could be
a manifestation of reconnection-driven energy depletion in the
eddies.

7 Note that this is indeed the regime that we would expect to describe
turbulence in the solar corona at these scales, rather than the MHD case of
Section 3: for typical coronal conditions, i.e., SL≈1014, L≈104 km,
Equation (15) of Loureiro & Boldyrev (2017a), describing the MHD case,
yields an estimate of the width of the inner boundary layer of the tearing mode
occurring on an eddy of width lcr of approximately 1 cm, smaller than the
electron skin depth and showing, therefore, that the tearing mode at such scales
is collisionless, as we consider in this section.

4
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It is interesting to analyze this result in light of recent MMS
observations of so-called electron-only reconnection in the
Earthʼs magnetosheath(Phan et al. 2018; Stawarz et al. 2019).
In Boldyrev & Loureiro (2019) we have estimated that the
decoupling of the ions in these events requires l d d de i e
or l d d de i e

2 3( ) depending on whether one assumes a
lxtanh( ) or lxsin( ) magnetic field profile for the reconnect-

ing field xB x( ) in the eddy. These estimates range from ∼6 to
∼12; combined with Equation (12) or (13) they suggest a rather
narrow range of scales where nonlinear “electron-only”
reconnection in the eddies may be possible. Remarkably, Phan
et al. (2018) report a current sheet thickness of~ d4 e, strikingly
consistent with these numbers and with Equation (12). This is
certainly very encouraging, but one must also bear in mind that
all our analytical results are only order of magnitude estimates
which ignore order unity numerical prefactors.

Another observationally based result which we interpret to
be consistent with our analysis is the recent claim by Chen et al.
(2019) that energy dissipation at kinetic scales in the
magnetosheath is dominated by linear electron Landau
damping (the energy dissipation rate via that channel being
comparable to the energy cascade rate). Indeed, Equation (12)
demonstrates that full reconnection in sub-ion scale eddies is
permitted for typical magnetosheath parameters; and previous
investigations of heating in (strong guide-field) collisionless
reconnection(Loureiro et al. 2013; Numata & Loureiro 2015)
show that when βe=1 linear electron Landau damping is by
far the dominant energy dissipation channel. Furthermore,
Chen et al. (2019) report a steepening of the spectrum at the
scales where Landau damping is prominent, consistent with our
expectations of the effects of active collisionless reconnection
in the cascade.

4.3. Low-beta Pair Plasmas

For completeness, we address here the case of low-beta pair
plasmas, for which governing equations and turbulence
scalings are given in Loureiro & Boldyrev (2018).

In the MHD regime the same equations as for an electron-ion
plasma apply; the discussion is thus unchanged from that of
Section 3.

In the case of a collisionless pair plasma, the criterion stated
in Equation (3) yields l -de 1 2 (exactly as in
Equation (12) since the scaling for γt is the same). This needs
to be reconciled with the requirements for the existence of a
tearing range in the first place: for a Harris-type reconnecting
profile, these are(Loureiro & Boldyrev 2018):

ld L L d L. 14e e
8 9( ) ( ) 

Therefore, the realizability of reconnection requires

» ´-L d 3 10 15e
9 2 4 ( )

(as well as simply that - 11 2  , a criterion which we have
also encountered in Section 4.2 and which we assume to be
marginally, though perhaps not asymptotically, satisfied). An
entirely similar calculation for the case of a sinusoidal
reconnecting field (instead of a Harris profile) yields instead
the requirement that » ´-L d 4.6 10e

14 3 4 . Both this
and Equation (15) are easily satisfied in astrophysical systems,
and are even reasonable enough that they might possibly be
met by numerical simulations in the not-too-distant future.

5. Conclusion

This paper builds on previous recent work on the onset of the
tearing instability in strong magnetic plasma turbulence,
establishing the conditions under which this instability may
develop into a deep nonlinear reconnecting state. The ability to
do so may deeply change the relative efficiency of different
energy dissipation channels, as well as the intermittency of the
turbulence. We think this has profound implications for
turbulent systems. For example, in weakly collisional plasmas,
reconnection is a well known efficient particle acceleration
mechanism(e.g., Guo et al. 2014; Sironi & Spitkovsky 2014;
Dahlin et al. 2015; Werner et al. 2017), and heats different
species at different rates (e.g., Numata & Loureiro 2015; Shay
et al. 2018). Therefore, if reconnecting eddies are a common
occurrence—the conditions for which are worked out in this
paper—then one might expect turbulence to be more efficient at
generating non-thermal populations and different electron-to-
ion temperature ratios, which are indeed observed or expected
in different space and astrophysical plasmas(see, e.g.,
Schekochihin et al. 2019, and references therein). Moreover,
the very observability of reconnecting turbulence depends,
obviously, on whether truly reconnecting eddies are the norm
or an exception.
Yet another consequential implication of the analysis carried

out in this paper stems from the fact that neitherEquation (8)
nor Equation (10) have ever been met in computer simulations
conducted to date, nor is that likely to happen in the near future.
It thus follows that all observations of reconnecting current
sheets in (three-dimensional) numerical simulations of strong
turbulence in the plasma regimes to which those equations
pertain are bound to be relatively rare or transient events, with
no significant impact on the nature of energy dissipation. In the
kinetic case, one immediate consequence of this is that particle
energization rates obtained in simulations of magnetic
turbulence may be severely underestimated with respect to
the environments that such simulations aim to study. One way
to remedy this situation might be to hard-wire, in numerical
simulations, energy dissipation prescriptions based on the
energetics of reconnection (specific to the particular plasma
parameters under study) at scales where the turbulent cascade is
tearing-dominated.
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